The experiments which we shall now describe were designed to measure the specific heat at constant volume of solid ${ }^{3} \mathrm{He}$ at temperatures from about $3^{\circ} \mathrm{K}$ up to the melting point at different densities corresponding to pressures up to 2000 atm . The melting region at constant volume was also investigated and measurements were made in the fluid region up to $29^{\circ} \mathrm{K}$. The general scope of the experiments was similar to that of the experiments by Dugdale \& Simon (1953) on solid ${ }^{4} \mathrm{He}$. For comparison with these experiments and because the present apparatus is capable of higher accuracy than that of the earlier work, we have made some measurements on ${ }^{4} \mathrm{He}$. The apparatus and experimental results will now be described.

2. Experimental

$2 \cdot 1$. The calorimeter

The measurements were made with an adiabatic calorimeter of conventional design. Figure 2 gives a sketch of the calorimeter and the adiabatic shield. The calorimeter incorporates the high pressure cell A (which accommodates the helium sample), a gas thermometer bulb B, a vapour pressure chamber C, a heater D, and a thermometer E.

Figure 2. Calorimeter assembly and adiabatic shield.
The pressure cell was machined from a solid cylinder of drillrod steel of $\frac{5}{8} \mathrm{in}$. outer diameter. A hole of $\frac{1}{4} \mathrm{in}$. diameter was drilled to within $\frac{1}{2} \mathrm{in}$. of one end. The opposite end was closed with a threaded plug which was put into place with hard solder. At each end a high pressure steel capillary of 1 mm outside diameter and 0.1 mm bore joined the cell. The capillaries widened at the end to about $\frac{1}{8} \mathrm{in}$. outside diameter and were threaded along this part. The capillaries were then threaded with hard solder into the cell. This technique gives a perfect seal which withstands high pressures. One of the capillaries leads to the filling line whereas the second capillary leads to a small Bourdon gauge.

The gas thermometer bulb was made from copper of $\frac{1}{16} \mathrm{in}$. wall thickness and had a volume of about $33 \mathrm{~cm}^{3}$. A split copper tube of $\frac{1}{16} \mathrm{in}$. wall thickness extended from the

